

Improvement in Lithium-ion battery testing and characterisation

Muhammad Sheikh

WMG, University of Warwick.

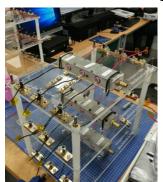
Coventry. UK

UKES 2019

Newcastle, UK.

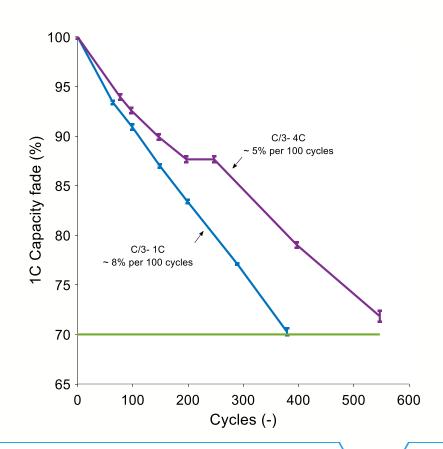
4th September 2019

Why battery testing and characterisation is important?


Problem definition

- Various designs and test rigs are used to characterise
 Li-ion batteries.
- Performing and collecting long-term ageing data is becoming prevalent.
- Contact resistance and temperature control of cells should measured to ensure reliable data sets.
- If not, large data-sets can be compromised and erroneous conclusions may be drawn.

An immersion test rig


Partial immersion test rig

An example

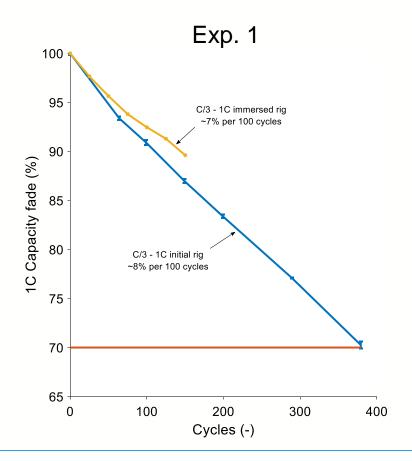
- Partially immersed setup used and results indicated that:
 - Batteries appeared to age rapidly:
 - 5% 8% per 100 cycles at 25°C
 - 10% 13% per 100 cycles at 40degC.
 - 1C discharge condition aged more rapidly than the 4C discharge cycling.

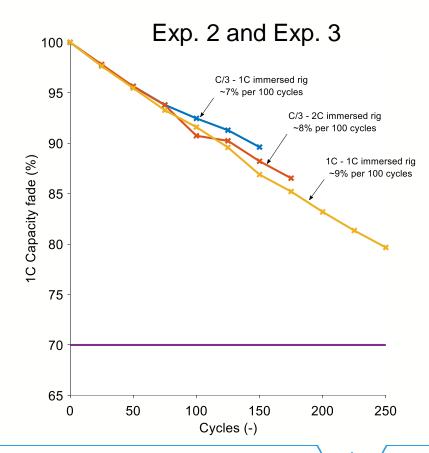
Possible sources of error

- Contact resistances
- Exposure of cell tabs to ambient
- 1C charging in snapshot test

	Internal resistance	Percentage increase compared to cell resistance @3.5V	
Initial test rig	7mΩ		54%
Immersed rig	0.2mΩ		2%
Experiments in immersed rig	C/3 – 1C cycling (Exp. 1)	C/3 – 2C cycling (Exp. 2)	1C – 1C cycling (Exp. 3)
Reason	To compare with initial rig	To study dependence of discharge rates (Exp. 2 vs 1)	To study dependence of charge rates (Exp. 3 vs Exp. 1)

Partial immersed rig




Fully immersed rig

Comparison of partially immersed and fully immersed results

Conclusions

- Immersed test rig with temperature control provided reliable results
- Safety of cells during testing can be improved by using immersed setup
- Battery test cyclers can also affect accuracy of results due to their current sensitivity
- ▶ Higher initial contact resistances can cause rapid cell degradation

Thank You

